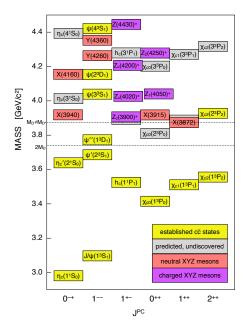
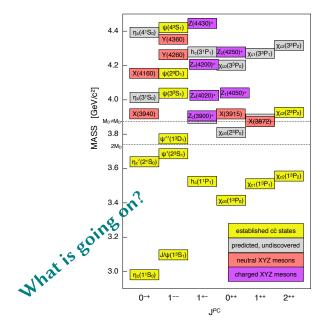


The X,Y,Z states from lattice QCD: progress and prospects

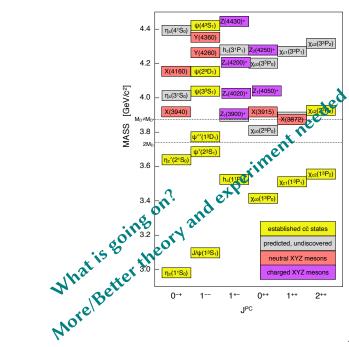
Sinéad M. Ryan Trinity College Dublin



POETIC, Temple University, November 2016


OUTLINE

- Introduction and motivation
- Benchmark calculations do we get the right answers?
- Making predictions and understanding new puzzles
 - going beyond ground state spectroscopy
 - $\bullet\,$ going beyond bound states to resonances and scattering states and the XYZs
- Recent and very recent results
- Lattice and experimental prospects. A role for the EIC?

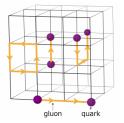

MOTIVATION - A CHARM REVOLUTION

MOTIVATION - A CHARM REVOLUTION

MOTIVATION - A CHARM REVOLUTION

A LATTICE **QCD** PRIMER

Start from the QCD Lagrangian:


$$\mathcal{L} = \bar{\Psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \Psi - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

Gluon fields on links of a hypercube;

Quark fields on sites: approaches to fermion discretisation -

Wilson, Staggered, Overlap.;

Derivatives → finite differences.

Solve the QCD path integral on a finite lattice with spacing $a \neq 0$ estimated stochastically by Monte Carlo. Can only be done effectively in a Euclidean space-time metric (no useful importance sampling weight for the theory in Minkowski space).

Observables determined from (Euclidean) path integrals of the QCD action

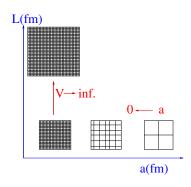
$$\langle \mathcal{O} \rangle = 1/Z \int \mathcal{D}U \mathcal{D}\bar{\Psi} \mathcal{D}\Psi \mathcal{O}[U,\bar{\Psi},\Psi] e^{-S[U,\bar{\Psi},\Psi]}$$

A RECIPE FOR (MESON) SPECTROSCOPY

- Construct a basis of local and non-local operators $\bar{\Psi}(x)\Gamma D_iD_j\dots\Psi(x)$ from distilled fields [PRD80 (2009) 054506].
- Build a correlation matrix of two-point functions

$$C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0 \rangle = \sum_n \frac{Z_i^n Z_j^{n \dagger}}{2E_n} e^{-E_n t}$$

- Ground state mass from fits to $e^{-E_n t}$
- Beyond ground state: Solve generalised eigenvalue problem $C_{ij}(t)v_i^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_i^{(n)}$
- eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} \left[1 + O(e^{-\Delta E t}) \right]$ principal correlator
- eigenvectors: related to overlaps $Z_i^{(n)} = \sqrt{2E_n}e^{E_nt_0/2}v_i^{(n)\dagger}C_{ji}(t_0)$


Some Compromises and their Consequences

for spectroscopy

1. Working in a finite box at finite grid spacing

 Identify a "scaling window" where physics doesn't change with a or V. Recover continuum QCD by extrapolation.

A costly procedure but a regular feature in lattice calculations now

2. Simulating at physical quark masses

- Computational cost grows rapidly with decreasing quark mass $\rightarrow m_q = m_{u,d}$ costly. Care needed vis location of decay thresholds and identification of resonances.
- Heavy quarks: c-quark relativistically; b-quark with EFTs.

Physical light quark simulations possible. Heavy quark systematics understood.

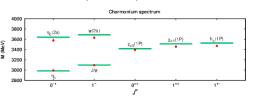
2. Breaking symmetry

• Lorentz symmetry broken at $a \neq 0$ so SO(4) rotation group broken to discrete rotation group of a hypercube.

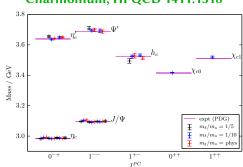
Spin identification at finite lattice spacing: 0707.4162, 1204.5425

3. Working in Euclidean time.

• Scattering matrix elements not directly accessible from Euclidean QFT [Maiani-Testa theorem].


Lüscher and generalisations of method for indirect access.

Benchmark Spectroscopy: states below strong decay thresholds


CHARMONIUM BELOW THRESHOLD - "GOLD-PLATED"

- \bullet N_f = 2, 2 + 1, 2 + 1 + 1
- Different actions in agreement. High statistics and improved actions.
- Simulation at m_q^{phys} or extrapolation $m_q \to m_q^{\text{phys}}$.
- Discretisation errors $\mathcal{O}(am_c)$ and $\mathcal{O}(am_b)$ under control.

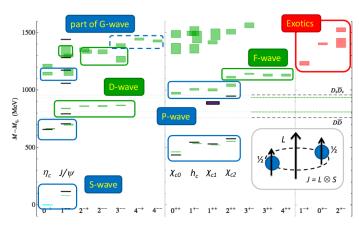
Perez-Rubio, Collins, Bali 1503.08440

Charmonium, HPQCD 1411.1318

No disconnected diagrams: OZI suppressed - assumed to be small

⇒ mixing with lighter states not included. Kicking this can of worms down the road!

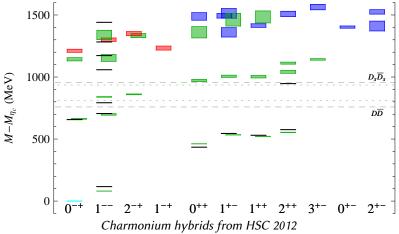
Beyon benchmark spectroscopy: excited and exotic states


SINGLE HADRON STATES: ABOVE THRESHOLD

Precision calculation of high spin $(J \ge 2)$ and exotic states is relatively new

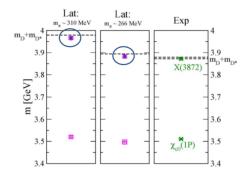
Caveat Emptor

- Only single-hadron operators
- Physics of multi-hadron states appears to need relevant operators
- No continuum extrapolation
- $M_{\pi} \sim 400 \text{MeV}$. With $M_{\pi} = 230 \text{MeV}$ arXiv:1610.01073 no change to pattern of states


Charmonium

Hadron Spectrum Collab. 2012

→ Expect improvements now methods established

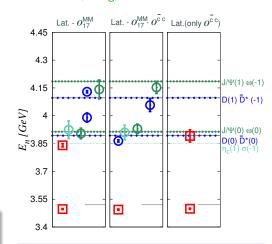


- Lightest hybrid supermultiplet and excited hybrid supermultiplet. Includes **exotic** $I^{PC} = 1^{-+}, 0^{+-}, 2^{+-}$.
- Exotic J^{PC} not accessible in e^+e^- but could be studied in photoproduction (EIC?) and in $p\bar{p}$ annihiliation (PANDA@GSI).

Spectroscopy above decay thresholds some examples from the XYZs

X(3872) - A FIRST LOOK (NO COUPLED CHANNELS)

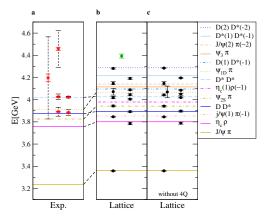
Prelovsek & Leskovec 1307.5172


ground state: $\chi_{c1}(1P)$

 $D\bar{D}^*$ scattering mx: pole just below thr. Location of thr., finite vol effects controlled?

Also results from Lee et al 1411.1389

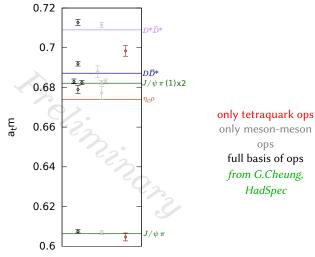
Within 1MeV of $D^0\bar{D}^{0*}$ and 8MeV of D^+D^* thresholds: isospin breaking effects important?


Padmanath, Lang, Prelovsek 1503.03257

X(3872) not found if $c\bar{c}$ not in basis.

Z_c^+ - First look on the lattice (no coupled channels)

Manifestly exotic hadron i.e. does not fit in the quark model picture.


Prelovsek, Lang, Leskovec, Mohler: 1405.7615

- 13 expected 2-meson e'states found (black)
- no additional state below 4.2GeV
- no Z_c^+ candidate below 4.2GeV

Similar conclusion from Lee et al [1411.1389] and Chen et al [1403.1318]

Why no eigenstate for Z_c ? Is Z_c^+ a coupled channel effect? Work needed!

RECENT (PRELIMINARY) WORK - CHARM TETRAQUARKS

0.69 $I = \frac{1}{2} \frac{1$

 $/\psi \rho (1)_{X3}$

 $D\bar{D}^{*}(1)x2$

0.75

0.74

0.73

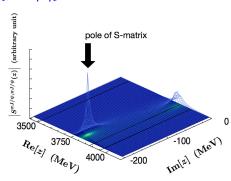
0.72

0.71

0.7

 $a_t m$

 $I^G(J^{PC}) = 1^+(1^{+-})$: No candidate state for Z_c^+ found. Charged X(3872) in I = 1, $\overline{c}c\overline{d}u$? No candidate state seen. **BUT** Isospi breaking and unstable ρ not include:


Other recent work: Z_c^+

A coupled-channel analysis by HAL QCD[1602.03465].

Challenges:

- The Z_c⁺ (as other XYZ states) lies above several thresholds and so decays to several two-meson final states
- Requires a coupled-channel analysis for a rigorous treatment
- On lattice the number of relevant coupled-channels is large for high energies.

- Potential method, not robustly tested.
- Suggest Z_c^+ a threshold cusp.

Other lattice results are needed to test this result

INTRODUCTION LATTICE PRACTICALITIES

LATTICE PRACTICALITIES

PROSPECTS FOR CHARMONIUM PHYSICS

- There have been many "first looks" at exotic, XYZ charmonium states in 2012-2015.
- The existing framework for two coupled channel analysis provides a path forward to study these states in more realistic scenarios.
- The first coupled channel study with charm quarks, by HadSpec, described in JHEP 1610 (2016) 011. Similar studies for $c\bar{c}$ planned.
- Charmonium radiative transitions also underway. Note resonant amplitudes also now studied: $\pi^+ \gamma \to \rho \to \pi^+ \pi^0$ in [Briceño et al, HadSpec 1604.03530].
- Studies of X(5568) in $B_s\pi$ [PRD 94 (2016) 074509] and revisiting pentaquarks underway [Prelovsek et al].

Challenges remain

- technical challenges remain memory requirements!
- Proliferation of coupled channels in charmonium
- Reducing pion mass more channels ... going beyond two coupled channels remains a practical challenge

Understanding this extended charming family

Charmonium a beautiful arena to probe the strong interaction by studying XYZs

- Theory: Improving lattice calculations underway!
- Experiment: current and near-future
 - e^+e^- : CLEO, BELLE II, BaBar, BESIII ; pp : LHCb and medium-future
 - $p\bar{p}$: PANDA @ GSI; Photoproduction: GlueX, ..., EIC?

What can EIC do?

 Photoproduction provides new avenues to explore XYZ states - complementary to current picture. Several proposals for XYZs in photoproduction

•
$$\gamma p \to Z_c^+(4430)n$$
, $Z_c^+ \to \Psi' \pi^+$ PRD77 (2008) 094005

•
$$\gamma_p \to Z_c^+(3900)n$$
, $Z_c^+ \to J/\Psi \pi^+$ PRD 88 (2013) 114009

•
$$\gamma p \rightarrow Z_c^+(4200)n$$
, $Z_c^+ \rightarrow J/\Psi \pi^+$ PRD 92 (2015) 094017

•
$$\gamma_p \to Y(3940)p$$
, $Y \to J/\Psi\omega$ PRD 80 (2009) 114007

• Hybrids - exotic J^{PC} not accessible in e^+e^- but could be studied in photoproduction (EIC?) and in $p\bar{p}$ annihiliation (PANDA@GSI).

Lots of exciting physics opportunities!